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Summary of Technical Sessions

I_ G. Burns and A. Banin

The third MSATT workshop, which was held September I 0-12, 1992, at Cocoa Beach/Cape Kennedy,

focused on chemical weathering of the surface of Mars. The 30 papers presented at the workshop

described studies of martian weathering processes based on results from the Viking mission experiments,

remote sensing spectroscopic measurements, studies of the SNC meteorites, laboratory measurements of

surface analog materials, and modeling of reaction pathways. Participants at the workshop heard six

invited overview lectures and two dozen contributed talks during six scientific sessions that were

scheduled during the first two days of the workshop. These presentations, which summarized the current

state of knowledge and reported recent research on the chemical evolution of the martian surface,

generated many lively discussions among the participants throughout the scientific sessions, particularly

during the closing session, which took place after attendees at the workshop had returned from

witnessing the launch of the 50th shuttle mission on September 12, 1992.

The Viking Lander experiments performed on the martian surface during 1976-1978 continue to provide

a wealth of information about the chemical state and reactivity of the regolith at Chryse and Utopia [1-3].

The XRF measurements, coupled with analyses of the SNC meteorites, account for almost 90 wt% of the

martian soil (expressed as oxides of Si, AI, Fe, Mg, Ti, Ca, K, and Na and as sulfate and chloride ions)
[1]. The chemical composition of the remaining 10 wt% continues to be debated with various lines of

evidence (derived from the Viking biological experiments, studies of SNC meteorites, and remote sensed

infrared spectroscopy) suggesting the presence of significant amounts of C (as carbonates [4-7]), P (as

phosphates [8,9]), N (as nitrates and peroxynitrates [2,3]), and H (as OH- and water in clay silicates

[10-13] that may be partially dehydroxylated [14]). Additional S (as sulfates [1,4,9]) may be present at

concentration levels higher than those initially estimated from the Viking XRF analyses of the martian soil

[1]. The regolith may also be highly enriched in a number of volatile elements, including F, Br, As, Se,

Zn, As, Cu, Br, Sb, Sn, Hg, Pb, and Bi [1,15].

The Viking biological experiments indicated the presence of oxidants in the regolith, and several candi-

date reactive species have been proposed, including peroxides, peroxynitrites, and oxyhalides [3]. Simu-

lations of the labeled release experiment may be indicative of iron-enriched clay silicates, which, like the

iron oxide phases, appear to be very poorly crystalline [ 16]. A major question concerning such secondary

silicate and iron oxides in the martian soil is why they have not "ripened" into well-crystallized phases

[16]. Perhaps water deficiency, low temperatures, and retarded kinetics are responsible for slow

weathering reactions of volcanic materials during the recent history of Mars [16,17].

Although the mineralogy of the martian regolith has not been determined directly, a variety of minerals

have been proposed based on remote sensing experiments and laboratory investigations of possible analog

materials possessing chemical, physical, and spectroscopic properties in common with the martian

surface. Predominant among the potential surface alteration products are palagonitic soil, clay silicates,
and ferric oxides.
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Clay minerals continue to be extensively studied as surface analogs with most attention centering on
Fe3+-bearing montmorillonite and nontronite [ 10,11,13,16,18]. However, attention was drawn to the

presence of iron saponites on Mars, based on evidence of deep-weathering of terrestrial igneous rocks

[14], reported occurrences in SNC meteorites [4,19], and experimental hydrothermal alteration product

ofbasalts [20]. By analogy with terrestrial occurrences, hydroxyl-deficient or dehyroxylated ferrian

saponites may exist on Mars [14], accounting for relatively weak O-H infrared spectral features in remote

sensed spectra. The cation adsorption properties [10,16], CO 2 uptake [21], and spectral features

[ 10,1 I, 13,14] of clay silicates are being studied by several participants. Iron-exchanged montmorillonite

containing ferric oxides as surface or interlayer species continues to be a popular candidate for several

spectral features of Mars [ 10,16], as well as a potential reactive substrate that influenced the Viking

biological experiments [ 13,16]. However, the identity of the interlayer ferric oxide is still debated [14,16],
with ferrihydrite, lepidocrocite, and nanophase hematite being possible constituents. Measurements of

adsoption capacities of clays have shown that CO 2 adsorption increases in nontronite devoid of water, so

that the martian regolith could function as an effective reservoir of CO 2 [21]. In infrared spectra of ferric

montmorillonites subjected to arid environments, the 1.9-1am band is weaker than the 2.2-1am band

[ I 0,11,13]. Moreover, reflectance spectra of palagonite-montmorillonite mixtures indicate that a thresh-

old limit of about 15% montmorillonite is required before the diagnostic 2.2-1am band becomes conspicu-

ous [13]. Thus, ferric montmorilionite may be present as a major constituent of the regolith, but be diffi-

cult to identify in remote sensed spectra of the martian surface [10,13].

Palagonite, formed as an alteration product of basaltic glass, is considered by many participants to be a

terrestrial analog of bright regions on Mars [13,15,18,20,22,23], based on the spectral properties in the

visible [18,22,24] and midinfrared regions [13,23], studies of impact crater deposits [15], and reaction

products in hydrothermal experiments [20]. Studies of midinfrared spectra indicate that terrestrial pa-

lagonites generally fall into two categories based on Si-O vibrations around 1000 cm -1 [23]. One impli-

cation of this result for interpreting thermal infrared data during the forthcoming Mars Observer mission

is that only a limited number of terrestrial analogs need to be considered [23]. Pigmentary ferric oxides

consisting of nanophase hematite with minor bulk hematite were identified in Hawaiian palagonitic soils, a

spectral analog of martian regolith, based on Mossbauer and reflectance spectral data of soils before and

aiter extraction of nanophase ferric oxides with dithionate-citrate-bicarbonate solutions [ 18]. Trans-

mission electron microscopy studies of palagonitic soils [4], as well as hydrothermally altered basaltic

glass [20], suggest that chemical weathering reactions proceeded by removal of soluble cations and Si

followed by the precipitation of a smectite or zeolite away from the glass weathering front, while leaving

a residue of nanophase iron oxides [4]. M0ssbauer spectroscopy also identified nonstoichiometric mag-

netite that had formed in cracks, rather than exposed surfaces, during low-temperature terrestrial weath-

ering of basaltic rocks [25].

Remote sensed reflectance spectra continue to serve as constraints for candidate ferric oxides and clay

silicates in bright regions of Mars [11,24,26], as well as identifying ferromagnesian silicates in relatively

unoxidized dark regions of the surface [12]. An unusual spectral unit in the central Valles Marineris ap-

pears to be hematite rich, but may also contain ubiquitous nanophase ferric oxide [26]. The unit may

result from volcanic activity and circulating hydrothermal fluids or be a weathered ore deposit [17,26].
Multispectral imaging data returned from the ISM instrument on the Phobos 2 mission are indicative of

variability of water-, hydroxyl-, and ferric-bearing phases in bright reddish regions of Mars [ 1 I, 12]. There

are indications that older deposits that formed when Mars had a wet, warm climate may differ from
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younger deposits originating when the surface of the planet was cooler [12]. Thus, although ferric oxides

and inferred altered materials are widespread on Mars, the ISM data confirm that in darker regions the

surface of the planet is relatively fresh [ 12]. Basaltic rocks with a weakly altered, low-albedo crust corre-

late with the ISM measurements, which indicate pyroxene compositions consistent with augite-pigeonite

assemblages or chemically zoned pyroxenes with a similar bulk composition [ 12].

Investigations of carbonates on Mars have been motivated by attempts to establish sinks for CO2, the

atmospheric pressure of which is generally believed to have been higher during past warmer climates on

Mars. Geochemical cycle models for the atmosphere-hydrosphere-regolith system on Mars have been

computed [5]. In preliminary models excluding changes of water volume and salinity, the calculations

suggest that atmospheric CO 2 passed rapidly through the oceans to form carbonate deposits and that

after about 10 4 yr a sharp drop of CO 2 pressure occurred and was associated with increased alkalinity of

the oceans [5]. Experiments studying rates of removal of atmospheric CO 2 by powdered diopside in the

absence of liquid water indicate that CO 2 storage proceeds rapidly enough to get rid of 1 bar CO 2 in 104

to 105 yr [6]. Dry mass wasting considered to be responsible for the recession of the walls of Valles

Marineris could result from decreased cohesion energies of subsurface materials by sublimation of ice into

the atmosphere [27].

Computer-based reaction-path calculations for chemical processes that might have occurred during a

postulated early warm, wet climate on Mars set constraints on the chemistry of rainwater and rainwater-

basalt interactions [9]. Rainwater in equilibrium with atmospheric PCO2 = 2.2 bar and PO2 = 10-5 bar

would have a pH of about 4.08 (cf. pH = 5.66 under higher P02 and lower PCO2 currently on Earth).

Addition of volcanic gases lowers the pH and raises the amount of dissolved sulfate and chloride [9].

Interactions of such acidic rainwater with Chassigny parental magma initially produces ferric and Mn

oxyhydroxides, kaolinite, smectites, chalcedony, and apatite at high water-rock ratios (>100) and low pH

values [9]. As more basalt reacts with the rainwater, the pH increases to near 8 for smaller water-rock

ratios (<10) and dolomite and calcite are predicted to form, together with ferrihydrite, apatite, and smec-

tites, once kinetic barriers to nucleation are overcome. Limited evaporation of water that had previously

reacted with basalt produces gypsum, calcite, dolomite, alkali feldspars, and phosphate minerals [9].

Similar calculations of minerals precipitated from groundwater buffered by the present-day martian

atmosphere indicate that dolomite, quartz, dawsonite [NaAICO3(OH)2], and nontronite saturate at the

beginning of the evaporation [28]. After 65% evaPoration they are joined by gypsum, which is replaced

by anhydrite once 99.8% of the water has evaporated. Since alkali chlorides have not yet precipitated at

this point, C1- ions produced by weathering of basalt could be accommodated, instead, in apatite [8,28].

Rates of chemical weathering of Fe2+-bearing minerals on Mars are predicted to be strongly dependent

on pH as well as temperature, ionic strength, and concentration of dissolved oxygen [17]. In acidic

groundwater, silicate minerals dissolve rapidly, but oxidation rates of aqueous Fe 2+ ions are very slow,

particularly in brines at low temperatures. At near-neutral pH, oxidation rates of dissolved Fe 2+ increase,

but dissolution rates of ferromagnesian silicate minerals decrease. As a result, rates of oxidative weather-

ing on the present-day surface of Mars are estimated to be 106 times slower than they were in the past

when a warm, wet climate probably prevailed [17]. Experimental studies of interactions of basalt glass

with atmospheric water vapor under maximum humidity and at elevated temperatures indicate that smec-

tite clay (saponite) forms on outermost surfaces of the glass [20]. Between the clay and unreacted glass is

an amorphous gel-like (palagonite) phase [20]. Extrapolation to 0°C yielded an alteration rate of about
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0.05 _m per year [20], which may be higher than reaction rates on the present-day surface of Mars where

atmospheric water vapor is considerably lower.

Experiments to identify soluble salts and compositions &martian brines are being made using mineral

mixtures that simulate assemblages in SNC meteorites [29]. In leaching experiments performed on sam-

ples of SNC meteorites [8], the bulk of C1 and Br, and much of the Na and K, is water-leachable in

Nakhla. Smaller proportions of these ions were water-leached from Shergotty, but were completely ex-
tracted by dilute acid. The leaching experiments revealed differences of behavior of REE elements and for

U relative to K, suggesting that the U and the REE elements, but not K, are accommodated in acid-sol-

uble apatite [8].

The question of chemical transport associated with alteration of impact melts on Mars has been addressed

by examining hydrothermal alteration products of palagonites associated with volcanic and impact depos-

its [15]. Chemical clues have been sought to distinguish between volcanic vs. impact crater sources of the

martian soil and alteration processes under ambient conditions vs. hydrothermal conditions. Limited data

indicate slight enrichments of Fe and Ai in altered impact material and slightly increased transport of

volatile elements in impact melt deposits compared to fumarolic deposits [15].

Studies of SNC meteorites have provided clues to the chemical environment beneath the martian regolith

in which authigenic minerals were formed by groundwater-basalt interactions [8,4,7,19]. All subgroups of

SNC meteorites contain traces of water-precipitated minerals, including various combinations of carbon-

ates, sulfates, halides, ferric oxides, and clay silicates [4]. Inferences from these mineral assemblages are

that they were associated with saline aqueous solutions that were oxidizing and alkaline [4]. Tempera-

tures of the pore waters are not so well constrained, but were probably below 70°C. In Lafayette, several

generations of cross-cutting rusty veinlets of aqueous alteration material (composed of saponite plus

ferrihydrite) replacing olivine are observed, indicating episodic water flow or injection [19]. The preter-

restrial origin of the alteration materials is shown by textural and mineralogical changes of the veinlets

toward the exterior fusion crust [19]. Carbonates in EETA 79001 and Nakhla have similar carbon and

oxygen stable isotopic compositions suggestive of a common (martian) origin [7]. There are also some

similarities to Antarctic weathering products, suggesting comparable equilibration temperatures with

water on the two planets [7]. The water and acid leaching studies of SNC meteorites also correlate with

the formation of aqueous alteration products on Mars [8]. The SNC meteorites may also hold the key to

identifying cosmogenic 15N formed in the regolith of Mars [30].

In summary, the ongoing research discussed at the workshop demonstrated that planetary geochemists

are gaining fresh insights into the processes and products of chemical weathering reactions on Mars.

However, major questions still remain concerning thermodynamic equilibria and chemical kinetics of soil-

forming processes by rock-water and rock-atmosphere interactions. Definitive answers to these questions

will require well-coordinated experimental investigations, computations of reaction pathways, #1 situ and

remote sensing observations, and future sampling missions to Mars in order to determine the extent of

surface alteration processes and to identify the secondary minerals that have formed during chemical
weathering ofvolcanic rocks on the martian surface.
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